
Implementing a Portable Multi-threaded Graph Library: the MTGL on Qthreads

Brian W. Barrett, Jonathan W. Berry, and Richard C. Murphy
Sandia National Laboratories

Albuquerque, NM
{bwbarre,jberry,rcmurph}@sandia.gov

Kyle B. Wheeler
University of Notre Dame and
Sandia National Laboraroties

Notre Dame, IN
kwheeler@cse.nd.edu

1. Introduction

Graph-based Informatics applications challenge tradi-
tional high-performance computing (HPC) environments
due to their unstructured communications and poor load-
balancing. As a result, such applications have typically been
relegated to either poor efficiency or specialized platforms,
such as the Cray MTA/XMT series. The multi-threaded
nature of the Cray MTA architecture1 presents an ideal
platform for graph-based informatics applications. As com-
modity processors adopt features to enable greater levels of
multi-threaded programming and higher memory densities,
the ability to run these multi-threaded algorithms on less
expensive, more available hardware becomes attractive.

The Cray MTA architecture provides both an auto-
threading compiler and a number of architectural features to
assist the programmer in developing multi-threaded applica-
tions. Unfortunately, commodity processors have increased
the amount of concurrency available by adding an ever-
growing number of processor cores on a single socket, but
have not added the fine-grained synchronization available
on the Cray MTA architecture. Further, while auto-threading
compilers are being discussed, none provide the feature set
of the Cray offerings.

Although massively multi-threaded architectures have
shown tremendous potential for graph algorithms, devel-
opment poses unique challenges. Algorithms typically use
light-weight synchronization primitives (Full/Empty bits,
discussed in Section 3.1) for synchronization. Parallelism
is not expressed explicitly, but instead compiler hints and
careful code construction allow the compiler to parallelize
a given code. Unlike the Parallel Boost Graph Library
(PBGL) [8], which runs on the developers laptop as well
as the largest supercomputers, applications developed for
the MTA architecture only run on the MTA architecture.
Experiments with the programming paradigm require access
to the platform, which is obviously a constrained resource.

In this paper, we explore the possibility of using the
Qthreads user-level threading library to increase the porta-
bility of scalable multi-threaded algorithms. The Multi-

1. Throughout this paper, we will use the phrase MTA architecture to
refer to Cray’s multi-threaded architecture, including both the Cray MTA-2
and Cray XMT platforms.

Threaded Graph Library (MTGL) [2], which provides
generic programming access to the XMT, is our testbed for
this work. We show the use of important algorithms from the
MTGL on on emerging commodity multi-core and multi-
threaded platforms, with only minor changes to the code
base. Although performance is not at the same level as the
same algorithm on a Cray XMT, the performance motivates
our technique as a workable solution for developing multi-
threaded codes for a variety of architectures.

2. Background

Recent work [9], [12] has described the challenges in
HPC graph processing. These challenges are fundamentally
related to locality (both spatial and temporal), and the
lack thereof when graph algorithms are applied to highly
unstructured datasets. The PBGL [8] attempts to meet these
challenges through storage techniques that reduce commu-
nication. These techniques have been shown to work well in
certain contexts, though they introduce other challenges such
as memory scalability. Even when they achieve run-time
scalability, the processor utilization on commodity CPUs is
considerably lower than that found in the MTA architecture.

2.1. Cray XMT

The Cray XMT is the successor to the Cray MTA-2 highly
multi-threaded architecture. Unlike the MTA-2, in which all
memory was equidistant from any processor on the network,
the XMT uses a more traditional model in which memory
is closer to a single processor than all others. The Cray
XMT utilizes similar processors to the MTA-2, including
the ability to sustain 128 simultaneous hardware threads,
but with an improved 500 MHz clock rate. Rather than the
custom network found on the MTA-2, the XMT utilizes the
SeaStar based network found on the Cray XT massively
parallel processor distributed memory platform.

2.2. Multi-core Architectures

As processor vendors have begun offering quad-core
processors, as well as more commodity multi-threaded pro-
cessors such as the Sun Niagara processors, it has become

possible to write multi-threaded applications on more tra-
ditional platforms. Given the high cost of even a small
XMT platform, the ability of modern workstations to support
a growing number of threads makes them attractive for
algorithm development and experimentation.

The Sun Niagara platform opens even greater multi-
threaded opportunities, supporting 8 threads per core and 8
cores per socket, for a total of 64 threads per socket. Current
generation Niagara processors support single, dual, and quad
socket installations. Unlike the Cray XMT, the Sun Niagara
uses a more traditional memory system, including L1 and
shared L2 cache structures, and an unhashed memory sys-
tem. The machines are also capable of running unmodified
UltraSPARC executables.

2.3. Multi-threaded Programming

Our approach is to take algorithm codes that have already
been carefully designed to perform on the MTA architec-
ture, and run them without altering the core algorithm on
commodity multi-core machines by simulating the thread-
ing hardware. In contrast, codes written using frameworks
specifically designed for multi-core commodity machines
(e.g. SWARM [13]) won’t run on the MTA architecture.

Standard multi-core software designs, such as Intel’s
Thread Building Blocks [10], OpenMP [6], and Cilk [3], tar-
get current multicore systems, and their architecture reflects
this. For example, they lack a means of associating threads
with a locale. This becomes a significant issue as machines
get larger and memory access becomes more non-uniform.

Another important consideration is the granularity and
overhead of synchronization. Existing large scale multi-
threaded hardware, such as the XMT, implement full/empty
bits. This provides for blocking synchronization in a locality-
efficient way. Existing multi-threaded software systems tend
to use lock-based techniques, such as mutexes and spinlocks,
or require tight control over memory layout. These methods
are logically equivalent, but are not as efficient to implement.
FEB’s are memory efficient when implemented in hardware,
and thus allow tight memory structures that can be safely
operated upon without requiring locking structures to be
inserted into them.

3. Qthreads

The Qthread API [16] is a library-based API for accessing
lightweight threading and synchronization primitives similar
to those provided on the MTA architecture. The API was
designed to support large-scale lightweight threading and
synchronization in a cross-platform library that can be
readily implemented on both conventional and massively
parallel architectures. On architectures where there is no
hardware support for the features it provides, or where
native threads are heavyweight, these features are emulated.

There are several existing threading models that support
lightweight threading and lightweight synchronization, but
none that sufficiently closely emulate the MTA architecture
semantics.

Equivalents for basic thread control, FEB-based read and
write functions, as well as basic threaded loops (analogs
for many of the pragma-defined compiler loop optimizations
available on the MTA architecture) are all provided by the
API. Even though the operations that do not have hardware
support, such as FEB-based operations, are emulated, they
retain usefulness as a means of intra-thread communication.

The API establishes convenient management of the basic
memory requirements of threads as they are created. When
insufficient resources are available, either thread creation
fails or it waits for the resources to become available,
depending on how the API is used.

Relatively speaking, locality of reference is not an impor-
tant consideration to the MTA architecture, as the address
space is hashed and divided among all processors at word
boundaries. This is an unusual environment, and locality
is an important consideration in most other large parallel
machines. To address this, the Qthread API provides a
generalized notion of locality, called a “shepherd”, which
identifies the location of a thread. A machine may be
described to the library as a set of shepherds, which can
refer to memory boundaries, CPUs, nodes, or whatever is a
useful division. Threads are assigned to specific shepherds
when they are created.

3.1. Implementation of MTA Intrinsics

The MTA architecture has several features that are intrin-
sic to the architecture, which the Qthread library emulates.
These features include full/empty bits (FEBs), fast atomic
increments, and conditionally created threads.

On the MTA architecture, a full/empty bit (FEB) is an
extra hardware flag associated with every word in memory,
marking that word either full or empty. Qthreads uses a cen-
tralized collection data structure to achieve the same effect:
if an address is present in the collection, it is considered
“empty”, and if not, it is considered “full”. Thus, all memory
addresses are considered full until they are operated upon by
one of the commands that will alter the memory word’s con-
tents and full/empty status. The synchronization protecting
each word is pushed into the centralized data structure. Not
all of the semantics of the MTA architecture can be fully
emulated, however. For example, on the MTA architecture,
all writes to memory implicitly mark the corresponding
memory words as full. However, when pieces of memory
are being used for synchronization purposes, even implicit
operations are done purposefully by the programmer, and
replacing implicit writes with explicit calls is trivial.

The MTA architecture also provides a hardware atomic
increment intrinsic. Atomic increment functions have often

been considered useful, even on commodity architectures,
and so hardware-based techniques for doing atomic incre-
ments are common. The Qthread API provides an atomic
increment function that uses a hardware-based implementa-
tion on supported architectures, but which falls back to using
emulated locks to achieve the same behavior on architectures
without explicit hardware support in the library. This is an
example of opportunistically using hardware features while
providing a standardized interface; a key feature of the
Qthread API.

3.2. Qthreads implementation of thread virtualiza-
tion

Conditionally created threads are called “futures” in MTA
architecture terminology, and are used to indicate that
threads need not be created now, but merely whenever there
are resources available for them. This can be crucial on the
MTA, as each processor can handle at most 128 threads,
and extremely parallel algorithms may generate significantly
more. The Qthread API provides an analogous feature by
providing alternate thread creation semantics that allow the
programmer to specify the permissible number of threads
that may exist concurrently, and which will stall thread
creation until the number of threads is less than the number
of permissible threads.

A key application of this is in loops. While a given loop
may have a large number of entirely independent iterations,
it is typically unwise to spawn all of the iterations as
threads, because each thread has a context and eventually
the machine will run out of memory to hold all the thread
contexts. Limiting the number of concurrently extant threads
limits the amount of overhead that will be used by the
threads. In a loop, the option to stall the thread creation
while the maximum number of threads still exist provides
the ability to specify a threaded loop without the risk of
using an excessive amount memory for thread contexts. The
limit on the number of threads is a per-shepherd limit, which
helps with load balancing.

4. The Multi-Threaded Graph Library

The Multi-Threaded Graph Library is a graph library
designed in the spirit of the Boost Graph Library (BGL)
and Parallel Boost Graph Library. The library utilizes the
generic component features of the C++ language to allow
flexibility in graph structures, without changes to a given
algorithm. Unlike the distributed memory, message passing
based PBGL, the MTGL was designed specifically for
the shared-memory multi-threaded MTA architecture. The
MTGL includes a number of common graph algorithms,
including the breadth-first search, connected components,
and PageRank algorithms discussed in this paper.

To facilitate writing new algorithms, the MTGL provides
a small number of basic intrinsics upon which graph al-
gorithms can be implemented. The intrinsics hide much
of the complexity of multi-threaded race conditions and
load-balancing from algorithm developers and users. Parallel
Search (PSearch), a recursive parallel variant of depth-first
search (which is not truly depth-first in order to achieve
parallelism), combined with an extensive vertex and edge
visitor interface, provides powerful parallelism for a number
of algorithms.

MTA architecture-specific features used by the MTGL are
either compiler hints specified via the #pragma mechanism
or are encapsulated into a limited number of templated
functions, which are easily re-implementable for a new
architecture. An example is the mt_readfe call, which
translates to readfe on the MTA architecture, a simple
read for serial builds on commodity architectures, and
qthread_readfe on commodity architectures using the
Qthreads library.

The combination of an internal interface for explicit
parallelism and the set of core intrinsics upon which much of
the MTGL is based provides an ideal platform for extension
to new platforms. While auto-threading compilers like those
found on the MTA architecture are not available for other
platforms, the small number of intrinsics can be hand-
parallelized with a reasonable amount of effort.

5. Qthreads and the MTGL

Making the MTGL into a cross-platform library required
overcoming significant development challenges. The MTA
architecture programming environment has a large number
of intrinsic semantics, and its cacheless hashed memory
architecture has unusual performance characteristics. The
MTA compiler also recognizes common programming pat-
terns, such as reductions, and optimizes them transparently.
For these reasons, the MTA developer is encouraged to
develop “close to the compiler”.

The size of stack necessary, for example, presents a
challenge. Some MTGL routines are highly recursive, and
the MTA transparently handles expanding the stack for each
thread as-needed. The Qthread library, however, has a fixed
stack size. Iterative solutions, combined with using larger
stacks was required to address the issue.

Both the MTA architecture and commodity processors
are susceptible to the problem of hot spotting, performance
degradation due to repeated access to the same memory
location. The MTA architecture suffers from both read
and write hot spotting, due to constraints in traffic across
the platform’s network. Commodity processors, however,
provide cache structures to improve performance and benefit
from read hot spotting. Commodity architectures also have
a larger granularity of memory sharing: a cache line, which
can be as large as 64 bytes. Concurrent writes within a cache

line create a hot spot, even if the writes affect independent
addresses. The cache was a consideration for atomic op-
erations as well, as they typically cause a cache flush to
memory. Avoiding atomic operations where possible, such
as in reductions, is important for performance.

6. Multi-platform Graph Algorithms

We consider three graph kernel algorithms: a search, a
component finding algorithm, and an algebraic algorithm.
There are myriad other graph algorithms, but we use these
three as primitive representatives on which other algorithms
can be built.

6.1. BFS

Breadth-first search (BFS) is, perhaps, the most funda-
mental of graph algorithms. Given a vertex v, find the
neighbors of v, then the neighbors of those neighbors, etc.
Furthermore BFS is well-suited for parallelization. Pseu-
docode for BFS from [5] is included in Figure 1.

BFS(G,s)
1 for each vertex u ∈ V [G] − {s}
2 do color[u] ← WHITE
3 d[u] ← inf
4 color[s] ← GRAY
5 d[s] ← 0
6 Q ← ∅
7 while Q 6= 0
8 do u ← DEQUEUE(Q)
9 for each vertex v ∈ Adj[u]
10 do if color[v] ← WHITE
11 then color[v] ← GRAY
12 d[v] ← d[u] + 1
13 ENQUEUE(Q, v)
14 color[v] ← BLACK

Figure 1. The basic BFS algorithm

There are two inherent problems with using this basic
algorithm in a multithreaded environment. The first is that
a parallel version of the for loop beginning on Line 9 will
make many synchronized writes to the color array. This is a
problem on machines like the Niagara regardless of the data
characteristics. It is also a problem on the XMT if there is
a vertex v of high in-degree (since many vertices u would
test v’s color simultaneously, making it a hot spot).

The second problem is even more basic: the ENQUEUE
operation of Line 13 typically involves incrementing a tail
pointer. As all threads will increment this same location, it
is an obvious hot spot.

We avoid these problems by chunking and sorting: sup-
pose that the next BFS level contains k vertices, whose
adjacency lists have combined length l. We divide the work
of processing these adjacencies into dl/Ce chunks, each of

size C (except for the last one). Then dl/Ce threads process
the chunks individually, saving newly discovered vertices
to local stores. Each thread can then increment the Q tail
pointer only once, mitigating that hot spot. However, in order
to handle the color hot spot, we do not write the local
stores directly into the Q. Rather, we concatenate them into
a buffer, sort that buffer with a thread-safe sorting routine
(qsort in Qthreads, or a counting sort on the XMT), then
have a single thread put the unique elements of this array into
the Q. This thread does linear work in serial, but the “hot
spot” is now used to advantage in cache-based multicore
architectures.

A better BFS algorithm is known for the XMT. Although
we currently do not have an implementation of this algo-
rithm, it would be a straightforward exercise to incorporate
it into the MTGL so that the same program could run
efficiently on either type of platform.

6.2. Connected Components

A connected component of a graph G is a set S of
vertices with the property that any pair of vertices u, v ∈ S
are connected by a path. Finding connected components
is a prerequisite for dividing many graph problems into
smaller parts. The canonical algorithm for finding connected
components in parallel is the Shiloach-Vishkin algorithm
(SV) [15], and the MTGL has an implementation of this
algorithm that roughly follows [1].

Unfortunately, a key property of many real-world datasets
will limit the performance of SV in practice. Specifically, it
is known both theoretically [7] (for random graphs), and
in practice (for interaction networks such, the World-Wide
Web, and many social networks) that the majority of the ver-
tices tend to be grouped into one “giant component” (GCC).
Algorithms like SV work by assigning a representative to
each vertex. Toward the end of these algorithms, all vertices
in the GCC are pointing at the same representative, making
it a severe hot spot.

We adopt a simple alternative to SV, which we call
GCC-SV. It is overwhelmingly likely (though we do not
not provide any formal analysis here) that the vertex of
highest degree is in the GCC. Given this assumption, we
BFS from that vertex using the method of Section 6.1 (or
psearch on the XMT), then collect all orphaned edges that
do not link vertices discovered during this search. Running
SV on the subgraph induced by the orphaned edges we find
the remaining components. This subproblem is likely to be
small enough so that even if the largest component of the
induced subgraph is a GCC of that graph (which is likely),
the running time is dwarfed by that of the original BFS. If
there is no GCC in the original graph, then the original SV
would perform well.

6.3. PageRank

#pragma mta assert nodep
for (int i=0; i<n; i++) {

double total=0.0;
int begin = g[i];
int end = g[i+1];
for (int j=begin; j<end; j++) {

int src = rev end points[j];
double r = rinfo[src].rank;
double incr = (r/rinfo[src].degree);
total += incr;

}
rinfo[i].acc = total;

}

Figure 2. The MTGL code for PageRank’s inner loop on
the XMT

PageRank, the algorithm made famous by Google for
ranking web pages [14], is a linear algebraic technique
for modeling the propagation of votes through a directed
graph, where each page contributes a fraction of its vote
to each of its out-neighbors. Ranks continue propagating
until convergence. A thorough mathematical explanation of
PageRank is beyond the scope of this paper. However, at
an abstract level PageRank is a sequence of matrix-vector
multiplications, each followed by a normalization step. In
graph terms, the most computationally expensive portion of
the algorithm is simply traversing all of the adjacencies in
the graph in order to accumulate votes.

Figure 2 shows the vote accumulation loops of PageRank
used by the MTGL on the XMT. The structure of these
loops enables the XMT compiler to merge them into one,
and to remove the reduction of votes into the variable total
from the final line of the inner loop. The result is excellent
performance. We simulate this in a Qthread-enabled version
of this code in the MTGL in order to achieve good scaling
on multi-core machines.

6.4. R-MAT graphs

R-MAT [4] is a parameterized generator of graphs that can
mimic real-world datasets. The term stands for “Recursive-
MATrix,” derived from the generation procedure, which is
a simulation of repeated Kronecker products [11] of the
adjacency matrix by itself. Intuitively, the R-MAT procedure
can be thought of as repeatedly dropping marbles through a
series of plastic trays. The topmost one typically is divided
into 4 quadrants, the second one into 16, etc. The bottom tray
is the adjacency matrix. At each level, a marble will pass
through one of 4 holes with probability given by 4 input
parameters; a, b, c, d. Multiple edges are not allowed, so if

a marble ends up on top of another marble in the adjacency
matrix, it is discarded and we try again.

Varying the parameters a, b, c, d determines much about
the structure of the resulting graph. For example, using
a = 0.25, b = 0.25, c = 0.25, d = 0.25 would generate an
Erdös-Rényi random graph. Putting more weight on one of
the quadrants tends to generate an inverse power-law degree
distribution, which is found in many real datasets.

In our experiments we generate two different classes of
R-MAT graphs:

• nice graphs have a = 0.45, b = 0.15, c = 0.15, d =
0.25. These graphs feature two natural communities at
each of many levels of recursion (quadrants a and d).
However, even in graphs a quarter of a billion edges,
the maximum vertex degree is only roughly a thousand.

• nasty graphs have a = 0.57, b = 0.19, c = 0.19, d =
0.05. These feature a much steeper degree distribution,
with a maxmimum degree of roughly 200,000 in our
quarter-billion edge example. Load balancing would
naturally be more challenging in this case.

Furthermore, we label our graphs with the exponent of the
number of vertices and hold the average degree at a constant
16, since this is relatively close to (though an over-estimate
of) the average degree of a page in the WWW. For example,
graph “R-MAT 21 Nasty” has 221 vertices, 224 undirected
edges, and R-MAT parameters as given above.

7. Multiplatform Experiments

We compare performance of the three graph kernel al-
gorithms described in Section 6—breadth-first search, con-
nected components, and PageRank—on three platforms ca-
pable of executing multiple threads simultaneously: the Cray
XMT, the Sun Niagara T2, and a traditional multi-socket,
multi-core platform.

The Cray XMT used in testing contains 64 500 MHz
ThreadStorm processors, each capable of sustaining 128
simultaneous hardware threads and 500 GB of shared mem-
ory. The SeaStar based network is a 3-d torus in a 8x4x2
configuration. The system was running version 6.2.1 of the
XMT operating system.

A Sun SPARC Enterprise T5240 server, with two 1.2 GHz
UltraSPARC T2 processors, each capable of sustaining 64
simultaneous hardware threads, was also used in testing. The
system contains 128 GB of memory and was running Sun
Solaris 10, 5/08 Release. The Sun CoolThreads version of
GCC was used to compile all tests.

Finally, a quad-socket, quad-core Opteron system, clocked
at 2.2 GHz, provides a traditional multi-core environment.
The system provides 32 GB of memory and is running Red
Hat EL 5.1. GCC 4.1.2 was used to compile all tests.

 0.1

 1

 10

 100

 1 10 100

C
o

m
p

le
ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of Threads

R-MAT 21 Nice
R-MAT 21 Nasty

R-MAT 23 Nice
R-MAT 23 Nasty

R-MAT 25 Nice
R-MAT 25 Nasty

Figure 3. Opteron Breadth-First Search

 0.1

 1

 10

 100

 1000

 1 10 100 1000

C
o

m
p

le
ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of Threads

R-MAT 21 Nice
R-MAT 21 Nasty

R-MAT 23 Nice
R-MAT 23 Nasty

R-MAT 25 Nice
R-MAT 25 Nasty

Figure 4. Niagara T2 Breadth-First Search

7.1. Breadth-First Search

We find that our method of avoiding hot spots in BFS
enables scaling beyond what would be achievable by a naive
algorithm. At the time of this writing, our implementation
runs on the XMT, but does not perform as well as native
XMT BFS implementations have done in the past. However,
our method does leverage the multi-core and Niagara plat-
forms effectively. As implied before, MTGL programmers
will run BFS by associating a visitor object with the kernel
algorithm, then running the latter. Underlying differences
in the kernel implementation, such as that likely in the
XMT implementation of BFS, will be hidden from the
programmer.

7.2. Connected Components

Our connected components codes demonstrate strong scal-
ing on multi-core and Niagara, as the GCC-SV algorithm is
dominated by a single run of BFS on the realistic datasets

 0.1

 1

 10

 100

 1 10 100

C
o

m
p

le
ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of Threads

R-MAT 21 Nice
R-MAT 21 Nasty

R-MAT 23 Nice
R-MAT 23 Nasty

R-MAT 25 Nice
R-MAT 25 Nasty

Figure 5. Opteron Connected Components GCC-SV

 1

 10

 100

 1000

 1 10 100 1000

C
o

m
p

le
ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of Threads

R-MAT 21 Nice
R-MAT 21 Nasty

R-MAT 23 Nice
R-MAT 23 Nasty

R-MAT 25 Nice
R-MAT 25 Nasty

Figure 6. Niagara T2 Connected Components GCC-SV

 1

 10

 100

 1 10 100

C
o

m
p

le
ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Number of Processors

GCC-SV: R-MAT 25 Nasty
GCC-SV: R-MAT 25 Nice

SV: R-MAT 25 Nasty
SV: R-MAT 25 Nice

Figure 7. Cray XMT Connected Components - GCC-SV
and SV

we address. Furthermore, we are able to demonstrate strong
scaling on the XMT as well by replacing the BFS by the
recursive psearch. Note the effect of data on algorithm

 0.1

 1

 10

 100

 1 10 100

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

S
e

c
o

n
d

s
)

Number of Threads

R-MAT 21 Nice
R-MAT 21 Nasty

R-MAT 23 Nice
R-MAT 23 Nasty

R-MAT 25 Nice
R-MAT 25 Nasty

Figure 8. Opteron PageRank

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

S
e

c
o

n
d

s
)

Number of Threads

R-MAT 21 Nice
R-MAT 21 Nasty

R-MAT 23 Nice
R-MAT 23 Nasty

R-MAT 25 Nice
R-MAT 25 Nasty

Figure 9. Niagara T2 PageRank

performance in Figure 7. Ironically, the “nasty” datasets are
most friendly to the algorithm, as the vast majority of all
vertices fall into the GCC in this case. As we consider
the “nice” datasets, this GCC membership becomes less
pathological (and less realistic). Therefore, the inherently
hot spotting SV algorithm has more work to do once the
GCC has been processed.

7.3. PageRank

As we saw in Figure 2, PageRank can be written to
leverage the auto-parallelizing compiler of the XMT quite
effectively. We cannot match the XMT’s performance in
emulation without work to reconstruct the compiler’s op-
timization. However, a straightforward parallelization of the
outer loop using qthreads still provides significant benefit,
as we see in Figures 8 and 9.

 0.1

 1

 10

 1 10 100

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

S
e

c
o

n
d

s
)

Number of Processors

R-MAT 25 Nasty

Figure 10. Cray XMT PageRank

8. Conclusions and future work

Developing multi-threaded graph algorithms, even when
using the MTGL infrastructure, provides a number of chal-
lenges, including discovering appropriate levels of paral-
lelism, preventing memory hot spotting, and eliminating
accidental synchronization. In this paper, we have demon-
strated that using the combination of Qthreads and MTGL
with commodity processors enables the development and
testing of algorithms without the expense and complexity
of a Cray XMT. While achievable performance is lower for
both the Opteron and Niagara platform, performance issues
are similar.

While we believe it is possible to port Qthreads to the
Cray XMT, this work is still on-going. Therefore, porting
work still must be done to move algorithm implementations
between commodity processors and the XMT. Although it
is likely that the Qthreads-version of an algorithm will not
be as optimized as a natively implemented version of the
algorithm, such a performance impact may be an acceptable
trade-off for ease of implementation.

9. Acknowledgments

The BFS used in this paper leverages a load balancing
algorithm to divide adjacencies into chunks. Cynthia Phillips
and Jon Berry developed an preliminary version of this
algorithm in 2008.

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

References

[1] BADER, D., CONG, G., AND FEO, J. On the architectural
requirements of efficient execution of graph algorithms. In

The 33rd International Conference on Parallel Processing
(ICPP) (2005), pp. 547–556.

[2] BERRY, J. W., HENDRICKSON, B. A., KAHAN, S., AND
KONECNY, P. Software and algorithms for graph queries on
multithreaded architectures. In Proceedings of the Interna-
tional Parallel & Distributed Processing Symposium (2007),
IEEE.

[3] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEIS-
ERSON, C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: an
efficient multithreaded runtime system. SIGPLAN Not. 30, 8
(1995), 207–216.

[4] CHAKRABARTI, D., ZHAN, Y., AND FALOUTSOS, C. R-mat:
A recursive model for graph mining. In In SDM (2004).

[5] CORMAN, T., LEISERSON, C., RIVEST, R., AND STEIN, C.
Introduction to Algorithms. MIT Press, 2001.

[6] DAGUM, L., AND MENON, R. OpenMP: An industry-
standard API for shared-memory programming. IEEE Com-
putational Science and Engineering 05, 1 (1998), 46–55.

[7] ERDÖS, P., AND RÉNYI, A. On random graphs I. Publica-
tiones Mathematicae, 6 (1959), 290–297.

[8] GREGOR, D., AND LUMSDAINE, A. The Parallel BGL: A
generic library for distributed graph computations. In Parallel
Object-Oriented Scientific Computing (POOSC) (July 2005).

[9] HENDRICKSON, B., AND BERRY, J. Graph analysis with
high-performance computing. Computers in Science and
Engineering 10, 2 (2008), 14–19.

[10] INTEL CORPORATION. Intel R©Thread Building Blocks,
1.6 ed., 2007.

[11] LESKOVEC, J., AND FALOUTSOS, C. Scalable modeling of
real graphs using kronecker multiplication. In In Proceedings
of the 24th International Conference on Machine Learning
(2007).

[12] LESKOVEC, J., LANG, K. J., DASGUPTA, A., AND MA-
HONEY, M. W. Statistical properties of community structure
in large social and information networks. In WWW (2008),
pp. 695–704.

[13] MINAR, N., BURKHART, R., LANGTON, C., AND ASKE-
NAZI, M. The Swarm simulation system: A toolkit for
building multi-agent simulations. Working Paper 96-06-042,
Santa Fe Institute, 1996.

[14] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T.
The pagerank citation ranking: Bringing order to the web.
Tech. rep., Stanford Digital Library Technologies Project,
1998.

[15] SHILOACH, Y., AND VISHKIN, U. An o(n log n) parallel
connectivity algorithm. J. Algorithms 3, 7 (1982), 57–67.

[16] WHEELER, K., MURPHY, R., AND THAIN, D. Qthreads: An
API for programming with millions of lightweight threads.
In Proceedings of the 22nd IEEE International Parallel &
Distributed Processing Symposium (April 2008), MTAAP
’08, IEEE Computer Society Press, pp. 1–8.

